

Plot No. 2, Knowledge Park-III, Greater Noida (U.P.) -201306

POST GRADUATE DIPLOMA IN MANAGEMENT (2024-26) END TERM EXAMINATION (TERM -III)

Subject Name: Machine Learning for Business Management Sub. Code: PGIT 31

Time: **02.00 hrs** Max Marks: **40**

Note: Attempt any all questions. You will get MLBM dataset excel file which contains question-wise data sheets.

Attempt each question in separate python file or jupyter notebook.

Put all file in a folder, right click on the folder and compress it to zip file. Rename this zip file in format name_ rollNo.

Kindly write the all the course outcomes as per your TLEP in the box given below:

CO-1: Describe the business needs ML in order to create competitive advantages and add real business value in solving business problems. (L3)

CO-2: Demonstrate the ML techniques and their application in business context. (L3)

CO-3: Apply and compare interesting and useful patterns from the explosive Volume of data by application of supervised and unsupervised techniques. (L3, L4, L5)

CO-4: Develop an appreciation for what is involved in learning from data and explain Integration of theory & application in various functional areas through interdisciplinary approach. (L4)

SECTION - A				
Attempt any FOUR questions. All questions are compulsory. $10 \times 4 = 40$ Marks				
Questions	CO	Bloom's		
Q1a. You are analyzing customer churn for a telecom company. You are given a		Level		
dataset with features like call minutes, internet usage, and customer service calls.				
Build a classification model using Logistic Regression to predict customer churn.				
Evaluate model accuracy.	CO1	L4		
or				
Q1b . You are given a dataset about sales data from multiple regions and product				
categories. Use Linear Regression to predict future sales based on past				
performance and analyze the result				
Q2a. A bank wants to identify different types of credit card users based on their				
transaction data. Use K-Means clustering to segment the customers. Visualize the				
clusters and explain insights of the cluster formed.	CO2	L4		
Or				
Q2b. Using the following weather data in sheet Q2b, predict whether to Play				
Golf or not for the conditions:				
Outlook = Sunny, Temperature = Cool, Humidity = High, Windy = True				
Apply the Naive Bayes classifier assuming all attributes are categorical and using				
the given dataset.				

Q3a. Use a PCA approach to reduce the dimensionality of a retail dataset having		
features like purchase amount, visit frequency, and items per transaction. Explain		
how dimensionality reduction affects model performance.		
Or	CO3 L4	
Q3b. Train a Support Vector Machine (SVM) model using an RBF (Radial Basis		
Function) kernel from sklearn.svm.SVC.Predict and print the class for a new		
point: (4, 4).		
Q4a. Use a Decision Tree classifier on HR data to predict employee attrition		
based on job role, monthly income, and working hours. Visualize the tree and		
explain the results.	CO4	L4
Or		
Q4b. Build a Random Forest classifier to predict loan approval status using		
features like income, credit score, loan amount, and employment status. Evaluate		
model using confusion matrix and ROC curve.		

Kindly fill the total marks allocated to each CO's in the table below:

COs	Question No.	Marks Allocated
CO1	Q1	10
CO2	Q2	10
CO3	Q3	10
CO4	Q4	10
CO5		
CO6		

(Please ensure the conformity of the CO wise marks allocation as per your TLEP.)

Blooms Taxonomy Levels given below for your ready reference:

L1= Remembering L2= Understanding L3= Apply L4= Analyze L5= Evaluate L6= Create